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We study a simple stochastic system with a “rich-get-richer” behavior, in which there are 2 states, andN
particles that are successively assigned to one of the states, with a probabilitypi that depends on the states’
occupationni as pi =ni

g / sn1
g+n2

gd. We show that there is a phase transition asg crosses the critical valuegc

=1. For g,1, in the thermodynamic limit the occupations are approximately the same,n1<n2. For g.1,
however, a spontaneous symmetry breaking occurs, and the system goes to a highly clustered configuration, in
which one of the states has almost all the particles. These results also hold for any finite number of states(not
only two). We show that this “rich-get-richer” principle governs the growth dynamics in a simple model of
gravitational aggregation, and we argue that the same is true in all growth processes mediated by long-range
forces like gravity.
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The first quantitative formulation of the “rich-get-richer”
principle was in the context of economics, by Simon[1]. He
proposed that businesses grow at an average rate that is pro-
portional to their sizes. He developed a simple stochastic
model incorporating this principle, which was able to explain
the observed size distribution of real firms. The same law of
a growth rate proportional to size also helps explain the dis-
tributions of city sizes[2,3], income(“Pareto’s law”), word
frequency in texts[2], and maybe even scientific impact
(“Mathew’s law”) [4]. The “rich-get-richer” principle has at-
tracted much interest recently, due to the discovery by
Barabási and Albert[5,6] that it is responsible for the power-
law degree distribution found in most networks, like the In-
ternet[7], the World Wide Web[8], biological networks[9],
language networks[10], and many others.

In this Letter, we are interested in understanding the sta-
tistical physics of systems described by skewed distributions
of the “rich-get-richer” type. In the studies mentioned above,
the systems are composed of many basic components(thou-
sands of cities, or hundreds of thousands of words, etc.),
whose number changes with time. We want to capture the
essential features of “rich-get-richer” accumulation pro-
cesses, without the complication of a system with a variable
number of component(or “states”). With this purpose in
mind, we study a very simple model, described by two states
S1 and S2, andN “particles.” The particles are assigned se-
quentially one by one to one of the two states according to a
stochastic process, with assignment probabilities that favor
the state with the greater current occupancy. Thus, our model
is close to some classical urn models of probability theory
[11]. We later tackle the case of a numberm of states greater
than 2, and we will see that all our conclusions remain the
same as in the simpler case ofm=2.

Another motivation for the present work is that previous
work on “rich-get-richer” accumulation phenomena has al-
most entirely been focused on very complex systems, such as
sociological and biological networks, the Internet, and so on.

Although data on such systems are often abundant, it is hard
to assess their underlying dynamical mechanisms from first
principles. We will show in this paper that a rich-get-richer
dynamics exists in a simple gravitational aggregation system.
Thus, this kind of biased growth process also occurs in
“hard” physical systems.

In our model, at every time unit a particle goes either into
stateS1 with probabilityp1sn1,n2d, or into stateS2 with prob-
ability p2sn1,n2d, wheren1 andn2 are the number of particles
already present in statesS1 andS2, respectively. This process
is repeated until allN particles are assigned a state. This
could represent, for instance, two cities competing for a total
population ofN persons. In this context, the likelihood of a
given person going toS1 or S2 will in general depend on how
many people already live inS1 andS2. In the case of gravi-
tational aggregation, a particle can fall into one of two bodies
sS1 andS2d, with the corresponding probabilities depending
on their relative mass. The simple “rich-get-richer” principle
used by Simon and others corresponds in our model to taking
pi to beni / sn1+n2d, with i =1,2. Wewill assume here a more
general dependence, of the formpi =ni

g / sn1
g+n2

gd, whereg is
a real parameter.g.0 corresponds to a generalized “rich-
get-richer” law, since particles tend to go to the most occu-
pied state. We think this general law for the probabilities is
appropriate for several realistic systems, and in particular we
will show that it is a good approximation of an idealized
model of gravitational aggregation. This stochastic process
bears some resemblance to some well-known models of non-
equilibrium statistical physics[13], like the biased random
walk [14], the Bragg-Williams kinetic model, and models
described by run-time statistics[15], besides the urn models
already mentioned[11]. We note that Krapivsky, Redner, and
Leyvraz have used a generalized “rich-get-richer” law simi-
lar to the one we propose, in the context of complex net-
works [12]. Although their system is very different from the
one we use in this paper, it is interesting to compare their
results to ours, and we do so later in the paper. The case of
more than 2 states is essentially similar, and will be treated in
the end of the paper. Essentially all the interesting phenom-
ena are the same as in the case of 2 states, and thus we will
study this simple case in detail first.*Electronic address: amoura@if.usp.br
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The most important quantity in our system is the probabil-
ity distribution PNsn1d, which measures the probability that
n1 particles went to stateS1, andn2=N−n1 particles went to
stateS2. Our main result is that, in the thermodynamic limit
N→`, there is a phase transition asg crosses the critical
valuegc=1, in which the statistical properties of the system
change dramatically. More precisely, forg,1, the distribu-
tion PNsn1d has a single narrow peak around the mean value
n1=N/2. In other words, we can expect that for largeN the
number of particles found in one state is likely to be very
close to the number of particles in the other state, both being
close to the averageN/2. In this case, we havedn1/n1!1,
where dn1 is the size of the typical fluctuation around the
average. In an aggregation process, this would mean that
both bodies end up with about the same mass. Ifg.1, on
the other hand, we show thatPNsn1d has two narrow peaks,
located around the extreme valuesn1=0 and n1=N. This
means that for these values ofg, the bias in the growth
process is so strong that almost all particles go to one of the
two states, the other one remaining practically empty. The
richer person gets almost everything, and the poor one gets
nearly nothing. In the example of gravitational aggregation,
for g.1 one body ends up with almost all the mass, while
the other one has negligible mass. The averagen1 (andn2) is
still equal toN/2, but in this case the average has little physi-
cal meaning, since there is practically no chance of gettingn1
or n2 close to the average value in any given realization.
Unlike the case ofg,1, the final outcome of the process is
completely indeterminate in the statistical sense: as a result
of the double-peaked nature of the distribution functionPN,
the system will end up in one of twomacroscopically distin-
guishablefinal states. In this case,dn1/n1 is of order 1. We
show the existence of this transition analytically through a
mean-field approximation, and verify this prediction numeri-
cally. We explain this transition as a result of the competition
between the tendency to cluster due to the bias in the growth
process, and the fact that the number of ways to reach un-
clustered states(with n1 close ton2) is larger than to reach
clustered states(with n1 very different fromn2). We also
show that forg.1, a phenomenon similar to Bose-Einstein
condensation occurs: in the limitN→`, there is a nonzero
probability thatall particles go to one state, the other state
being empty. To illustrate these results with a physical sys-
tem, we introduce an idealized model for aggregation of mat-
ter by gravitation, and show that it is an example of a system
with g.1. We argue that this is a general feature of aggre-
gation processes, if long-range forces are present.

We start by deriving the master equation for the biased
stochastic process described above. Suppose that at some
point in the process there aren1 particles in stateS1, andn2
particles in stateS2. Then the probability that the next par-
ticle will go to stateSi is pisn1, n2d , i =1,2, where

pisn1,n2d =
sni + 1dg

sn1 + 1dg + sn2 + 1dg . s1d

The reason we usepi ,sni +1dg is that we avoid problems in
the important case where initiallyni =0. For largeni, Eq. (1)
is approximately the same aspi =ni

g / sn1
g+n2

gd. A positive g

means that there is an “attraction” between the particles, or a
preference for new particles to go to the most occupied state,
and thus a tendency to clustering.g,0 would indicate a
“repulsion” between particles. We focus on theg.0 case in
this paper.

We denote bysn1,n2d the configuration of the system
where there aren1 particles in stateS1, andn2 particles inS2.
Let Psn1,n2d be the probability that, aftern1+n2 steps, state
sn1,n2d is reached. This state can arise in one of two ways:
either the system was in statesn1−1,n2d and then the next
particle went to stateS1, or the system was in the state
sn1,n2−1d, and the next particle went toS2. This allows us to
write Psn1,n2d as the sum of two terms corresponding to
these two contributions, using Eq.(1):

Psn1,n2d =
n1

g

n1
g + sn2 + 1dg

Psn1 − 1,n2d

+
n2

g

sn1 + 1dg + n2
g Psn1,n2 − 1d. s2d

We will assume that initially both states are empty. This cor-
responds toPs0,0d=1. Using this initial condition together
with Eq. (2), we can calculate iterativelyP for any value of
n1 andn2.

In order to gain some insight on the behavior of the prob-
ability distributionP, we turn to a mean-field approach. Sup-
pose we have a very large numberN of particles, and thatn1
and n2 are both much greater than 1. In this case, we can
approximaten1 andn2 as continuous variables. The probabi-
listic rule given by Eq.(1) is hence well approximated on
average by the continuous ordinary differential equations:

ṅ1 = p1sn1,n2d, ṅ2 = p2sn1,n2d, s3d

where we imagine that a large number of particles “fall” into
eitherS1 or S2 at a constant rate, and the dot denotes deriva-
tive with respect to time. We are particularly interested in
how the ratior =n1/n2 changes with time. Using Eq.(3), we
get

ṙ =
d

dt
Sn1

n2
D =

ṅ1

n2
−

n1ṅ2

n2
2 =

1

n2
2Sn2n1

g − n1n2
g

n1
g + n2

g D , s4d

where we used Eq.(1) and the fact thatn1,n2@1.
From Eq.(4), we see that the rate of change ofr =n1/n2

depends on the ration2n1
g /n1n2

g=rg−1,

if rg−1 . 1, ṙ . 0,

if rg−1 , 1, ṙ , 0.
s5d

Let us consider first the caseg,1. In this case, the power
g−1 in Eq. (5) is a negative number. If there are more par-
ticles in stateS1 than inS2, the ratior is greater than 1, and
thereforerg−1 is less than 1. From Eq.(5), this means that
ṙ ,0. Analogously, we find from Eq.(5) that if r ,1, then
ṙ .1. In other words, ifg,1, the dynamics given by Eq.(4)
acts so as to keep the ratior =n1/n2 close to 1, and thusn1
close ton2. Differencesdn=n1−n2 betweenn1 and n2 are
“dampened” in this case. These considerations suggest that
for a large numberN of particles, the system will be almost
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certainly in a state wheren1<n2, and if we look at(say) n1,
we will find a value very close to the averageN/2. Even
though the particular sequence in which the statesS1 andS2
are filled is unpredictable, the “macroscopic” variables such
as n1 and n2 are perfectly predictable, since they are over-
whelmingly likely to be in a very narrow vicinity of their
averages.

Next we consider the caseg.1. Now the powerg−1 is
positive, and from Eq.(5), we have thatṙ .0 if r .1, and
ṙ ,0 if r ,1. Here the situation is the opposite to the previ-
ous one: the mean-field dynamics pushes the ratior away
from 1, and small differences betweenn1 andn2 are ampli-
fied as more particles are successively assigned states. The
mean-field result thus implies that in this case, the system
will go to a highly clustered state, where the vast majority of
particles are in one of the two states, the other one being
nearly empty. WhetherS1 or S2 will be the favored state is
completely unpredictable, since this depends on random de-
tails early in the growth process. Accordingly, forg.1 the
system isstatistically unpredictable: not only the details of
the process are unpredictable, but also the final values of the
macroscopic variables themselves cannot be predicted. The
occupation probabilities(1) are symmetric with respect to
the statesS1 andS2, and therefore the average value of both
n1 and n2 for many realizations is the same as in theg,1
case:n1=n2=N/2. However, for any particular realizationn1
andn2 will be far away from their averages, close to either 0
or N, and the relative standard deviationdn1/n1 will be close
to 1. Forg.1, aspontaneous symmetry breakingoccurs: the
final state of the system is one in which there is a preference
for eitherS1 or S2, whereas the dynamics itself, given by Eq.
(1), is symmetric. The transition atg=gc=1 can be regarded
as a first-order nonequilibrium phase transition.

For a given numberN of particles, the quantity that char-
acterizes the system is the probability distributionPNsn1d,
which measures the probability that there aren1 particles in
S1, given that there areN=n1+n2 particles in total. Because
of the symmetry of Eq.(1), we could equally well usen2 in
the definition ofPN, the results would be exactly the same.

PN is given in terms of the previously defined distribution by
PNsn1d=Psn1,N−n1d. The considerations of the previous
paragraphs imply that in the limit of largeN, for g,1,
PNsn1d has a sharp peak around the average valuen1=N/2,
practically vanishing for values ofn1 (andn2) far away from
N/2. For g.1, on the other hand,PNsn1d should have two
peaks, around the extreme valuesn1=0 and n1=N, corre-
sponding to the preference in this case for clustered states.
The caseg=1 is a threshold, and from the mean-field result
(4), we expect thatPN will be a constant value, yielding a
uniform occupation probability.

In order to verify the above predictions, we solve numeri-
cally, by successive iterations, Eq.(2), with the initial con-
dition Ps0,0d=1, corresponding to a state where no particles
are initially assigned. The results are plotted in Figs.
1(a)–1(c) for the casesg,1, g=1, andg.1 respectively.
We see that our predictions are indeed confirmed, and there
is a “clustering transition” asg crosses the critical valuegc

=1. This phenomenon can be understood by realizing that in
our stochastic growth process there is a competition between
two effects. First, the bias in the assignment of states given
by Eq.(1) means that(for g.0) the particles tend to cluster,
which tries to push the distributionPN away from the mean
N/2 and toward the extremes 0 andN. On the other hand,
there are many more different sequences of assignments
which correspond to states wheren1<n2<N/2. In other
words, theentropy of unclustered states is greater. This is
clearly seen if we remember that the caseg=0, correspond-
ing to no bias, yields just the binomial distribution forPN,
which is highly peaked around the average. Forg,1, the
entropy factor wins against the clustering tendency, andPN
has a peak around the average, as seen in Fig. 1(a). If g.1,
the bias is stronger, and clustering wins, which leads to the
double peak inPN. For g=gc=1, the two opposing effects
exactly balance, and all states are equally likely, which is
consistent with the constant distribution shown in Fig. 1(b).
The results in Fig. 1 were also verified by a direct Monte
Carlo simulation of the growth process.

FIG. 1. Numerical calculation
of PNsn1d with N=103, for (a)
g,1, (b) g=1, and (c) g.1.
There is a well-defined peak
around N/2 for g,1, and two
peaks around 0 andN for g.1, in
accordance with the theory.(d)
shows the probabilityPNsNd that
all particles go to the stateS1, for
N=104.
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From Eq. (1), we can calculate exactly the probability
PNsNd=PNs0d for all particles to go to a single state(say,S1).
From Eq.(1), this is given by

PNsNd =
1

2
·

2g

1 + 2g ·
3g

1 + 3g ¯

Ng

1 + Ng . s6d

Taking the logarithm of both sides, and doing some simple
algebraic manipulations, we get

− ln PNsNd = ln 2 + ln s1 + 2−gd + ¯ + ln s1 + N −gd. s7d

Now we go to the thermodynamic limitN→`. The sum on
the right-hand side of Eq.(7) becomes an infinite series. For
gø0, we see immediately that this series diverges, and the
probability P=limN→`PNsNd for all particles to go to one of
the states is 0. Forg.0, the terms inside the logarithms of
Eq. (7) decrease, and for a giveng.0 there is a numberm
such that lns1+k−gd is well approximated by its first-order
Taylor expansion, ifkùm. Hence, we can approximate Eq.
(7) for N→` by

− ln P = C + o
n=m

`
1

ng , s8d

whereC=ln 2+¯ +ln s1+sm−1d−gd is a finite positive con-
stant. The convergence properties of the sum in(8) are well
known, and we get the result

if g ø 1, the sum diverges, andP = 0,

if g . 1, the sum converges, andP . 0.
s9d

This means that wheng becomes greater than 1, there is a
finite (nonzero) probability in the thermodynamic limitN
→` that all particles go to the same state. This is an extreme
case of clusterization, which is analogous to the Bose-
Einstein condensation in a bosonic system, in which a finite
fraction of a system’s particles go to the same quantum state.
The probabilityP that this happens goes continuously from 0
for g,1 to positive values forg.1. This behavior ofP was
verified numerically by a direct calculation ofPNsNd from
Eq. (6) for largeN. The result is shown in Fig. 1(d). Using an
integral approximation to the sum in Eq.(8), we can find
how P scales in the vicinity of the transition pointgc=1.
Writing g=1+e, for e!1 we have

P , exps− 1/ed. s10d

At e=0 sg=1d, P is nonanalytic, and displays anessential
singularity, with all the derivatives vanishing ase→0.

Krapivsky et al. have examined the growth process of a
complex network, where the attachment probability for a
new node depends as a power law on the degree of the ex-
isting nodes, analogous to Eq.(1) [12]. They show that for
g.1, a condensation phenomenon happens, where a node
can receive a finite fraction of all the links of the network.
This is somewhat similar to our results, even though our
system has only two states, whereas the complex networks
studied by Krapivskyet al. have many states, which can be
identified with the network’s nodes.

We now introduce a very simple model of gravitational
aggregation to illustrate our theory, and to show that the
“rich-get-richer” phenomenon can also happen in “hard”
physical systems, and not only in the complex systems found
in sociology, biology, etc. Suppose we have two bodiesS1
andS2 whose positions are fixed in space, and have at some
given time massesM1 andM2. Suppose further that they are
far away from each other. What is the probability that a small
incoming particle with massm and energyE will be captured
by S1 (or S2)? A rough approximation can be obtained by
assuming that capture occurs if the particle enters the region
where the gravitational potential energy due toS1 is equal(in
modulus) to the particle’s kinetic energyE. The probability
of capture byS1 is then proportional to the cross-section area
of the sphere given byuU1u =E, whereU1 is the gravitational
potential due toS1. We haveU1,−M1/R1, whereR1 is the
distance from the center of bodyS1, which is assumed to
have spherical symmetry. Similar relations hold forS2. Thus,
for a given particle’s energyE, the sphere has radiusR1
which is proportional toM1, and since the capture probabil-
ity P1 is proportional toR1

2, we find

Pi , Mi
2, s11d

wherePi is the capture probability forSi, i =1,2. When one
of the bodies captures a particle, its mass increases, and from
Eq. (11) its capture probability will increase, making it more
likely to capture the next particle. If we take a sequence of
incoming particles, we have a growth process like the one
described by our theory. Assuming that all incoming particles
have the same mass and the same energy, their massesMi are
proportional to the numberni of captured particles. If we
ignore particles that are not captured, we have exactly the
growth model described by Eq.(1), with g=2. We conclude
that this is a statistically unpredictable system, where with
overwhelming probability one of the bodies will end up with
nearly the entirety of the mass.

The fact that the previous system is statistically unpredict-
able is due to the presence of a long-range interaction, such
as gravity. To see this, consider an aggregation process with-
out gravity. In this case, the capture probabilityPi is propor-
tional to the cross-section area of the bodiesS1 andS2 them-
selves. AssumingS1 andS2 have constant densities, we find
Pi ,Mi

2/3. We still have a clustering tendency, but in this case
g,1. This means that the aggregation process will yield
approximately equal masses toS1 andS2. We think this is a
very general result: if in an aggregation process there is a
long-range force, it is statistically unpredictable, whereas if
only short-range interactions are present, it is statistically
predictable, and the usual statistical properties hold.

To conclude, we notice that, although we focused on the
case of two states throughout the paper, the above theory can
be easily generalized for any finite numberm of states. In
this case, the generalization of Eq.(1) is

pisn1, ¯ ,nmd =
ni

g

n1
g + ¯ + nm

g , s12d

wherepisn1,¯ ,nmd is the probability that the next particle
will go to stateSi, with i =1,2,¯ ,m. The master equation
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for m states is an obvious extension of Eq.(2), and the same
mean-field approximation can be made, with a result similar
to Eq. (5):

if r ij
g−1 . 1, ṙ i j . 0,

if r ij
g−1 , 1, ṙ i j , 0,

s13d

wherer ij =ni /nj, i Þ j , and i , j =1,¯ ,m. We thus arrive at a
conclusion similar to them=2 case: forg,1, the ratiosr ij

go to 1 forN=oi ni →`, and the occupation of all states will
be nearly equal,n1<n2< ¯ <nm<M /m. For g.1, on the
other hand, one state will be occupied with the overwhelm-
ing majority of the particles, whereas the other states will be
practically empty. In particular, the gravitational aggregation
by m bodies will have the same clustering properties as in the
case of 2 bodies.

I would like to thank André Vieira, Mário de Oliveira, and
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