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Biased growth processes and the “rich-get-richer” principle
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We study a simple stochastic system with a “rich-get-richer” behavior, in which there are 2 statés, and
particles that are successively assigned to one of the states, with a probghifiat depends on the states’
occupationn; asp;=n//(n]+n}). We show that there is a phase transitiomasrosses the critical valug,
=1. For y<1, in the thermodynamic limit the occupations are approximately the sapren,. For y>1,
however, a spontaneous symmetry breaking occurs, and the system goes to a highly clustered configuration, in
which one of the states has almost all the particles. These results also hold for any finite number @icttates
only two). We show that this “rich-get-richer” principle governs the growth dynamics in a simple model of
gravitational aggregation, and we argue that the same is true in all growth processes mediated by long-range
forces like gravity.
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The first quantitative formulation of the “rich-get-richer” Although data on such systems are often abundant, it is hard
principle was in the context of economics, by Sinjdh He  to assess their underlying dynamical mechanisms from first
proposed that businesses grow at an average rate that is pymrinciples. We will show in this paper that a rich-get-richer
portional to their sizes. He developed a simple stochastidynamics exists in a simple gravitational aggregation system.
model incorporating this principle, which was able to explainThus, this kind of biased growth process also occurs in
the observed size distribution of real firms. The same law ofhard” physical systems.

a growth rate proportional to size also helps explain the dis- In our model, at every time unit a particle goes either into
tributions of city sizeg2,3], income(“Pareto’s law’), word  stateS, with probability py(ny,np), or into stateS, with prob-
frequency in texts[2], and maybe even scientific impact ability p,(n;,n,), wheren; andn; are the number of particles
(“Mathew’s law”) [4]. The “rich-get-richer” principle has at- already present in stat& andsS,, respectively. This process
tracted much interest recently, due to the discovery bys repeated until alN particles are assigned a state. This
Barabasi and Albeff5,6] that it is responsible for the power- could represent, for instance, two cities competing for a total
law degree distribution found in most networks, like the In-POPulation ofN persons. In this context, the likelihood of a

ternet[7], the World Wide Wel{8], biological networkg9], ~ 9iven person going t§, or S will in general depend on how
language networkELO], and many others. many people already live i8;, andS,. In the case of gravi-

In this Letter, we are interested in understanding the stotational aggregation, a particle can fall into one of two bodies

tistical physics of systems described by skewed distribution%Sl aanSZ), V\."th the correspc_mdlng“ probablllyes ?,eP.e”O."”g
of the “rich-get-richer” type. In the studies mentioned above on their re_latlve mass. The simple nch-_get-rlcher prmmple
the systems are composed of many basic comporits- 'used by Simon and others corresponds in our model to taking

> p; to ben;/(n;+ny), withi=1,2. Wewill assume here a more
sands of cities, or hundreds of thousands of words,),etc. .
whose number changes with time. We want to captu)re th eneral dependence, of the foppen/ (nf+n3), wherey is

. o . ” . real parametery>0 corresponds to a generalized “rich-
essential features of “rich-get-richer” accumulation pro-

ithout th licati ¢ ; ith bl et-richer” law, since particles tend to go to the most occu-
cesses, without the comp LCa lon of a system with a variabléyiey state. We think this general law for the probabilities is
number of componentor “states’). With this purpose in

. . X appropriate for several realistic systems, and in particular we
mind, we study a very simple model, described by two stategij| show that it is a good approximation of an idealized

S, and$,, andN “particles.” The particles are assigned se-model of gravitational aggregation. This stochastic process
quentially one by one to one of the two states according to §ears some resemblance to some well-known models of non-
stochastic process, with assignment probabilities that favogquilibrium statistical physic$13], like the biased random
the state with the greater current occupancy. ThUS, our mOdWa"( [14]' the Bragg_Wi"iamS kinetic mode|' and models
is close to some classical urn models of probability theorygescribed by run-time statisti¢a5], besides the urn models
[11]. We later tackle the case of a numbeof states greater gready mentioneffl1]. We note that Krapivsky, Redner, and
than 2, and we will see that all our conclusions remain thq_eyvraz have used a genera”zed “rich_get_richer” law simi-
same as in the simpler caserf2. lar to the one we propose, in the context of complex net-
Another motivation for the present work is that previousyorks[12]. Although their system is very different from the
work on “rich-get-richer” accumulation phenomena has al-one we use in this paper, it is interesting to compare their
most entirely been focused on very complex systems, such ggsults to ours, and we do so later in the paper. The case of
sociological and biological networks, the Internet, and so 0Nmore than 2 states is essentially similar, and will be treated in
the end of the paper. Essentially all the interesting phenom-
ena are the same as in the case of 2 states, and thus we will
*Electronic address: amoura@if.usp.br study this simple case in detail first.
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The most important quantity in our system is the probabil-means that there is an “attraction” between the particles, or a
ity distribution Py(n;), which measures the probability that preference for new particles to go to the most occupied state,
n, particles went to statg;, andn,=N-n; particles went to and thus a tendency to clustering<<O would indicate a
stateS,. Our main result is that, in the thermodynamic limit “repulsion” between particles. We focus on the- 0 case in
N—c, there is a phase transition ascrosses the critical this paper.
value y.=1, in which the statistical properties of the system We denote by(n;,n,) the configuration of the system
change dramatically. More precisely, for< 1, the distribu-  where there are; particles in stat&,;, andn, particles inS,.
tion Py(ny) has a single narrow peak around the mean valud.et P(n;,n,) be the probability that, aftam, +n, steps, state
n;=N/2. In other words, we can expect that for lafgehe  (n;,n,) is reached. This state can arise in one of two ways:
number of particles found in one state is likely to be veryeither the system was in state;—1,n,) and then the next
close to the number of particles in the other state, both beingarticle went to stateS;, or the system was in the state
close to the averaghl/2. In this case, we havén,/n; <1,  (n;,n,—1), and the next particle went . This allows us to
where 8n; is the size of the typical fluctuation around the write P(n,;,n,) as the sum of two terms corresponding to
average. In an aggregation process, this would mean thgese two contributions, using EL):
both bodies end up with about the same mass.>1, on
the other hand, we show thB%(n;) has two narrow peaks, _ ny
located around the extreme valueg=0 and n,;=N. Thi P =y

$=0 and n;=N. This ny+(n,+1)”
means that for these values ¢f the bias in the growth
process is so strong that almost all particles go to one of the +
two states, the other one remaining practically empty. The (ny+1)Y+nJ

richer person gets almost everything, and the poor one ge% i that initiall both stat . Thi
nearly nothing. In the example of gravitational aggregation, € will assume that initially both states are empty. This cor-

for y>1 one body ends up with almost all the mass, WhiIere.sponds tdP(0,0=1. Using this in@tial condition together
the other one has negligible mass. The avergandn,) is with Eqg. (2), we can calculate iterativell for any value of
still equal toN/2, but in this case the average has little physi-Nz @ndn..

cal meaning, since there is practically no chance of getting /" ©rder to gain some insight on the behavior of the prob-
ability distributionP, we turn to a mean-field approach. Sup-

or n, close to the average value in any given realization. X

Unlike the case ofy< 1, the final outcome of the process is POS€ We have a very large numBéof particles, and that,

completely indeterminate in the statistical sense: as a resuf?d N2 aré both much greater than 1. In this case, we can

of the double-peaked nature of the distribution functiyg ~ &PProximaten, andn, as continuous variables. The probabi-
listic rule given by Eq.(1) is hence well approximated on

the system will end up in one of twmacroscopically distin- X ; , X e
guishablefinal states. In this caseén,/f, is of order 1. We 2average by the continuous ordinary differential equations:

show the existence of_ this transition a_nalytlcglly through a hy = PNy, Ny =pa(ng,ny), (3)
mean-field approximation, and verify this prediction numeri-

cally. We explain this transition as a result of the competitionwhere we imagine that a large number of particles “fall” into
between the tendency to cluster due to the bias in the growtgitherS, or S, at a constant rate, and the dot denotes deriva-
process, and the fact that the number of ways to reach uriive with respect to time. We are particularly interested in
clustered state@with n, close ton,) is larger than to reach how the ratior =n;/n, changes with time. Using E@3), we
clustered stategwith n; very different fromn,). We also  get

P(n; - 1,ny)

Y
N P(nn,-1). 5

show that fory>1, a phenomenon similar to Bose-Einstein q , ; 1 IR
condensation occurs: in the limiN— <, there is a nonzero P= _(ﬁ) M n1|;12 = _2< N2Ni nan), (4)
probability thatall particles go to one state, the other state dt\ny/ n; n;  ny\ ni+nj

being empty. To illustrate these results with a physical SYSiyhere we used Eq1) and the fact thany,ny> 1.

tem, we introduce an idealized model for aggregation of mat- From Eq.(4), we see that the rate of changerafn,/n
. . e . ’ 11112
ter by gravitation, and show that it is an example of a SySter%lepends on the ratio,n}/nny=r"1,

with y>1. We argue that this is a general feature of aggre-
gation processes, if long-range forces are present. ifri>1, r>0,
We start by deriving the master equation for the biased . 1 .

) X if r=<1, r<o.
stochastic process described above. Suppose that at some
point in the process there amg particles in states;, andn, Let us consider first the case<1. In this case, the power
particles in stateS,. Then the probability that the next par- y-1 in Eq.(5) is a negative number. If there are more par-
ticle will go to stateS is p,(ny, ny),i=1,2,where ticles in stateS; than inS,, the ratior is greater than 1, and
thereforer”! is less than 1. From Eq5), this means that
r <0. Analogously, we find from Eq5) that if r <1, then
r>1. In other words, ify<1, the dynamics given by E¢)
acts so as to keep the ratien;/n, close to 1, and thus,

The reason we usg ~ (n;+1)? is that we avoid problems in close ton,. Differencesén=n,-n, betweenn; andn, are
the important case where initially=0. For largen;, Eq. (1) “dampened” in this case. These considerations suggest that
is approximately the same gs=n?/(n{+nJ). A positive y  for a large numbeN of particles, the system will be almost

(5

(n+1)”
(ng+1)7+(ny+ 1)

@

pi(nlr n2) =
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certainly in a state whene, = n,, and if we look af(say) n;, Py is given in terms of the previously defined distribution by
we will find a \{alue very close_to th_e avera2. Even  Py(n))=P(n;,N-n;). The considerations of the previous
though the particular sequence in which the st&eandS,  paragraphs imply that in the limit of largh, for y<1,
are filled is unpredictable, the “macroscopic” variables sucrpN(nl) has a sharp peak around the average vajueN/2,
asny andn, are perfectly predictable, since they are over-pactically vanishing for values of, (andn,) far away from
whelmingly likely to be in a very narrow vicinity of their ;o Fory>1, on the other hand?y(n,) should have two
averages. -

. o peaks, around the extreme values=0 andn;=N, corre-

oé\ilt?\)/(é Waengof':g'rgeé I?Se) C\?Vﬁal\}eNg]V;ftieoﬂ?vgga grllsd sponding to the preference in this case for clustered states.

P ' 96), ! The casey=1 is a threshold, and from the mean-field result

r <0 if r<1. Here the situation is the opposite to the previ- 4 ¢ thaP. will b tant val elding a
ous one: the mean-field dynamics pushes the nativay ( )_’ we expect thaly will be a constant vaiue, yielding
uniform occupation probability.

from 1, and small differences betweapandn, are ampli- ) . )
fied as more particles are successively assigned states. The!n order to verify the above predictions, we solve numeri-
mean-field result thus implies that in this case, the systerf@lly, by successive iterations, E@), with the initial con-

will go to a highly clustered state, where the vast majority ofdition P(0,0)=1, corresponding to a state where no particles
particles are in one of the two states, the other one beingre initially assigned. The results are plotted in Figs.
nearly empty. Whethe$, or S, will be the favored state is 1(@-1(c) for the casesy<1, y=1, andy>1 respectively.
completely unpredictable, since this depends on random déVe see that our predictions are indeed confirmed, and there
tails early in the growth process. Accordingly, fei>1 the  is a “clustering transition” ag crosses the critical valug,
system isstatistically unpredictablenot only the details of =1. This phenomenon can be understood by realizing that in
the process are unpredictable, but also the final values of theur stochastic growth process there is a competition between
macroscopic variables themselves cannot be predicted. Theo effects. First, the bias in the assignment of states given
occupation probabilitiegl) are symmetric with respect to by Eq.(1) means tha¢for y>0) the particles tend to cluster,
the statesS, andS,, and therefore the average value of bothwhich tries to push the distributioRy away from the mean

n, andn, for many realizations is the same as in the 1 N/2 and toward the extremes 0 ahd On the other hand,
casen;=n,=N/2. However, for any particular realizatioy ~ there are many more different sequences of assignments
andn, will be far away from their averages, close to either Owhich correspond to states whemg=n,~N/2. In other

or N, and the relative standard deviatién,/n; will be close  words, theentropy of unclustered states is greater. This is
to 1. Fory>1, aspontaneous symmetry breakioccurs: the clearly seen if we remember that the case0, correspond-
final state of the system is one in which there is a preferencing to no bias, yields just the binomial distribution B,

for eitherS; or S,, whereas the dynamics itself, given by Eq. which is highly peaked around the average. kher 1, the

(1), is symmetric. The transition gt=~.=1 can be regarded entropy factor wins against the clustering tendency, Bgd

as a first-order nonequilibrium phase transition. has a peak around the average, as seen in fy.IL y>1,

For a given numbeN of particles, the quantity that char- the bias is stronger, and clustering wins, which leads to the
acterizes the system is the probability distributiBg(n,), double peak inPy. For y=v.=1, the two opposing effects
which measures the probability that there ayeparticles in  exactly balance, and all states are equally likely, which is
S,, given that there ardl=n;+n, particles in total. Because consistent with the constant distribution shown in Figo)1
of the symmetry of Eq(1), we could equally well use, in ~ The results in Fig. 1 were also verified by a direct Monte
the definition ofPy, the results would be exactly the same. Carlo simulation of the growth process.
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From Eq. (1), we can calculate exactly the probability = We now introduce a very simple model of gravitational
Pn(N) =Py (0) for all particles to go to a single statgay,S,). aggregation to illustrate our theory, and to show that the

From Eq.(1), this is given by “rich-get-richer” phenomenon can also happen in “hard”
physical systems, and not only in the complex systems found
P(N) 1z 3N ©) in sociology, biology, etc. Suppose we have two bodgs
N 2 142 1+3 1+N” andS, whose positions are fixed in space, and have at some

given time massebl,; andM,. Suppose further that they are

Taking the logarithm of both sides, and doing some simpléar away from each other. What is the probability that a small
algebraic manipulations, we get incoming particle with mass and energye will be captured

_ by S, (or $,)? A rough approximation can be obtained by

—INP\(N)=In2+In(1+27)+ -+ +In(1+N7). (7)  a55uming that capture occurs if the particle enters the region

where the gravitational potential energy duestas equal(in
modulug to the particle’s kinetic energl. The probability
8f capture byS, is then proportional to the cross-section area
of the sphere given bjJ,| =E, whereU, is the gravitational
potential due tdS;. We haveU;~-M4/R;, whereR; is the
distance from the center of body, which is assumed to
have spherical symmetry. Similar relations hold $r Thus,
for a given particle’s energ¥, the sphere has radiuR;
which is proportional tdM4, and since the capture probabil-
ity P, is proportional toR?, we find

-InP=C+ > pet (8) Pi~ M7, 1D
r=m whereP; is the capture probability fo§, i=1,2. When one

whereC=In 2+---+In (1+(m-1)"") is a finite positive con- of the bodies captures a particle, its mass increases, and from
stant. The convergence properties of the sur(jrare well Eq. (12) its capture probability will increase, making it more

Now we go to the thermodynamic limN—cc. The sum on
the right-hand side of Eq7) becomes an infinite series. For
vy=<0, we see immediately that this series diverges, and th
probability P=limy_...Pn(N) for all particles to go to one of
the states is 0. Foy>0, the terms inside the logarithms of
Eq. (7) decrease, and for a givey>0 there is a numbem
such that (1 +k™?) is well approximated by its first-order
Taylor expansion, ik=m. Hence, we can approximate Eg.
(7) for N— o by

known, and we get the result likely to capture the next particle. If we take a sequence of
' incoming particles, we have a growth process like the one
if y<1, the sum diverges, ard=0, described by our theory. Assuming that all incoming particles

9) have the same mass and the same energy, their mdsses
proportional to the numben; of captured particles. If we

This means that whery becomes greater than 1, there is algnore particles tha'g are not captu_red, we have exactly the
finite (nonzerg probability in the thermodynamic limiN ~ 9rowth model described by EL), with y=2. We conclude
— o that all particles go to the same state. This is an extrem#at this is a statistically unpredictable system, where with
case of clusterization, which is analogous to the Bosepverwhelmmg_probab|llty one of the bodies will end up with
Einstein condensation in a bosonic system, in which a finité'e&rly the entirety of the mass. _ o _
fraction of a system’s particles go to the same quantum state. Th.e fact that the previous system is statlst|_cally un_predlct-
The probabilityP that this happens goes continuously from 0@bPle is due to the presence of a long-range interaction, such
for y< 1 to positive values foy> 1. This behavior of was @S gravity. To see this, consider an aggregation process with-
verified numerically by a direct calculation &f(N) from  Out gravity. In this case, the capture probabilyis propor-

Eq. (6) for largeN. The result is shown in Fig.(@). Using an tional to the cross-section area of the bodigean_d_sz them-_
integral approximation to the sum in Eg), we can find selvesélﬁssumln@l ands$, have constant densities, we find
how P scales in the vicinity of the transition point=1. P;~M:"". We still have a clustering tendency, but in this case

if y>1, the sum converges, afi> 0.

Writing y=1+e, for e<1 we have vy<1. This means that the aggregation process will yield
' approximately equal masses $ andS,. We think this is a
P ~ exp(- 1/e). (10)  very general result: if in an aggregation process there is a

_ _ ) ) long-range force, it is statistically unpredictable, whereas if

At €=0(y=1), P is nonanalytic, and displays assential only short-range interactions are present, it is statistically
singularity, with all the derivatives vanishing as— 0. predictable, and the usual statistical properties hold.

Krapivsky et al. have examined the growth process of a  To conclude, we notice that, although we focused on the
complex network, where the attachment probability for acase of two states throughout the paper, the above theory can
new node depends as a power law on the degree of the eke easily generalized for any finite numbmerof states. In
isting nodes, analogous to El) [12]. They show that for thjs case, the generalization of E@) is
y>1, a condensation phenomenon happens, where a node
can receive a finite fraction of all the links of the network. ny
This is somewhat similar to our results, even though our pi(Ny, - Ny) = A+ +n? (12
system has only two states, whereas the complex networks ! m
studied by Krapivskyet al. have many states, which can be wherep;(ny,---,ny) is the probability that the next particle
identified with the network’s nodes. will go to stateS, with i=1,2,---,m. The master equation

056116-4



BIASED GROWTH PROCESSES AND THE “RICH-GET-

for m states is an obvious extension of E8), and the same
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go to 1 forN=%; n— o0, and the occupation of all states will

mean-field approximation can be made, with a result similabe nearly equalp, =n,=---=n,=~M/m. For y>1, on the

to Eq. (5):

if r7t>1, 1;>0,

. 13
if rit<1, 1;<0, 13

wherer;=n;/n;, i #j, andi,j=1,---,m. We thus arrive at a
conclusion similar to then=2 case: fory<1, the ratiosr;

other hand, one state will be occupied with the overwhelm-
ing majority of the particles, whereas the other states will be
practically empty. In particular, the gravitational aggregation
by m bodies will have the same clustering properties as in the
case of 2 bodies.
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